

Special tool steel solutions for

Forging Dies

Kind&Co

For over 130 years, we have been producing high-quality tool steel exclusively at our site in Bielstein. Kind&Co is still a family owned business today. We stand for sophisticated material solutions, highest quality, reliable service and competent advice - tailored to the respective application. We have particularly strong application expertise in the areas of die casting, extrusion and die forging.

Trends in Die Forging

Die Forging is one of the most important processes in the production of serial parts in all areas of our lives. Basic requirements of forgings in all application areas are high dimensional precision and excellent material properties to allow for a long service life, often in safety-critical components

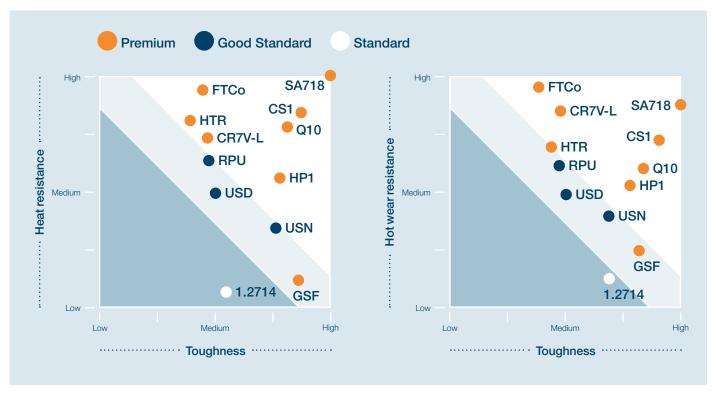
The forging industry is constantly evolving. Due to


- · increasingly complex component geometries,
- · new production materials, and
- · increasing series sizes,

the requirements on forging dies are as well increasing constantly.

In addition to conventional hot forging, more modern forming technologies have increased in importance and today are very economical manufacturing process, especially due to cost savings achieved by near-net or precision warm forming. Precision forgings are mainly used in the key components of aircraft, power generation equipment, tubing components and automotive which have the high requirements on surface quality and security. Titanium and titanium alloys are used today extensively in aerospace and medical applications. Because of their high specific strength, titanium usage results in significant weight reduction. Another advantages include high thermal stability and corrosion resistance.

The presence of high temperature gradients during modern precision forging processes increases the risk for tooling defects. Hot wear, radial cracks and tool breakage are often the consequences.


In order to meet these demanding requirements, our company can offer tailor-made hot work steel, which are able to withstand the severe challenges and to maximize die life. With our deep knowledge and vast experience we supply premium solutions. The use and propper selection of special, tailored tool steel grades is the key to meet the challenges of industrial forging today and beyond.

User-friendly, customised property combinations also cover challenging demands

Good standard: Standardised alloy concept (ISO), but very well executed by KIND & Co. Well balanced material quality, therefore often a good selection for many intended uses.

Premium hot work tool steel with property combinations tailored to meet the intented use with maxium efficiency.

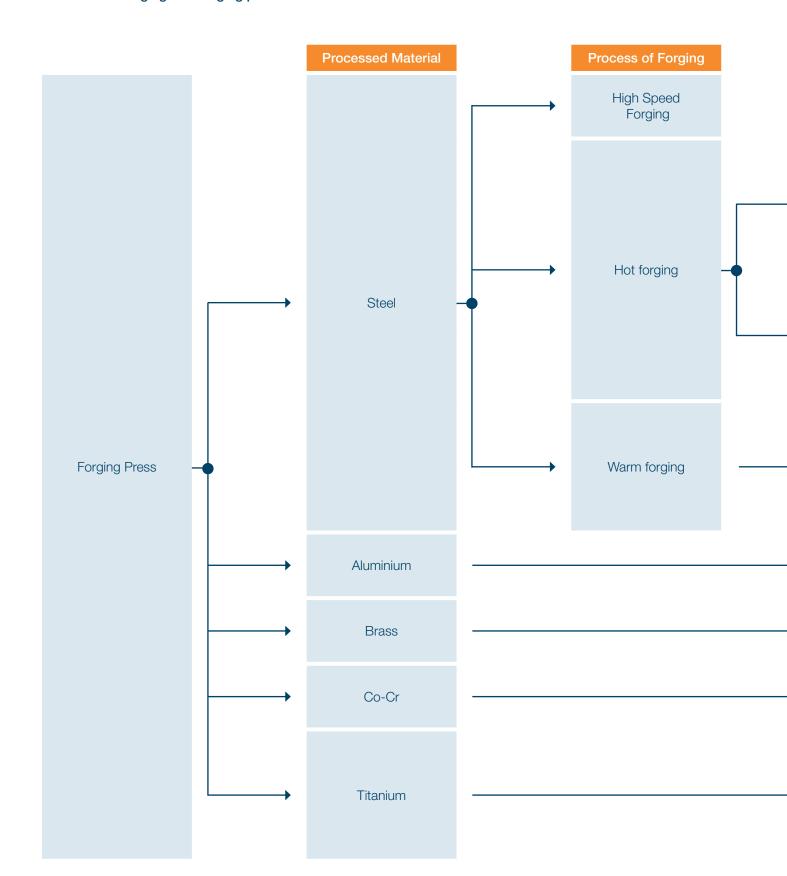
Premium hot work steel with property combinations tailored to meet the necessary intended use

- CR7V-L high wear resistance for dies forging long product series and for high demanding tolerances
- CS1 the combination of excellent toughness at high hardness. Ideally suited for warm forging and forging of high temperature resistant alloys
- FTCo excellent tempering resistance and high wear resistance. For high demanding forging mandrels and die forging stems, subjected to high compression, also for forging of Cu and brass alloys
- HP1 excellent toughness, for deep impressions or with the tendency of radial cracks. For forging aluminum alloys
- GSF high toughness at improved level of tensile strength, hardened ex mill. For impressions subjected to cracks, especially with intensive mechanical impact
- SA718 outstanding high temperature resistance and ductility A Ni base alloy for special applications in dropstamping like isothermal presses and forming devices of titanium alloys

Tool steel grades - chemical composition

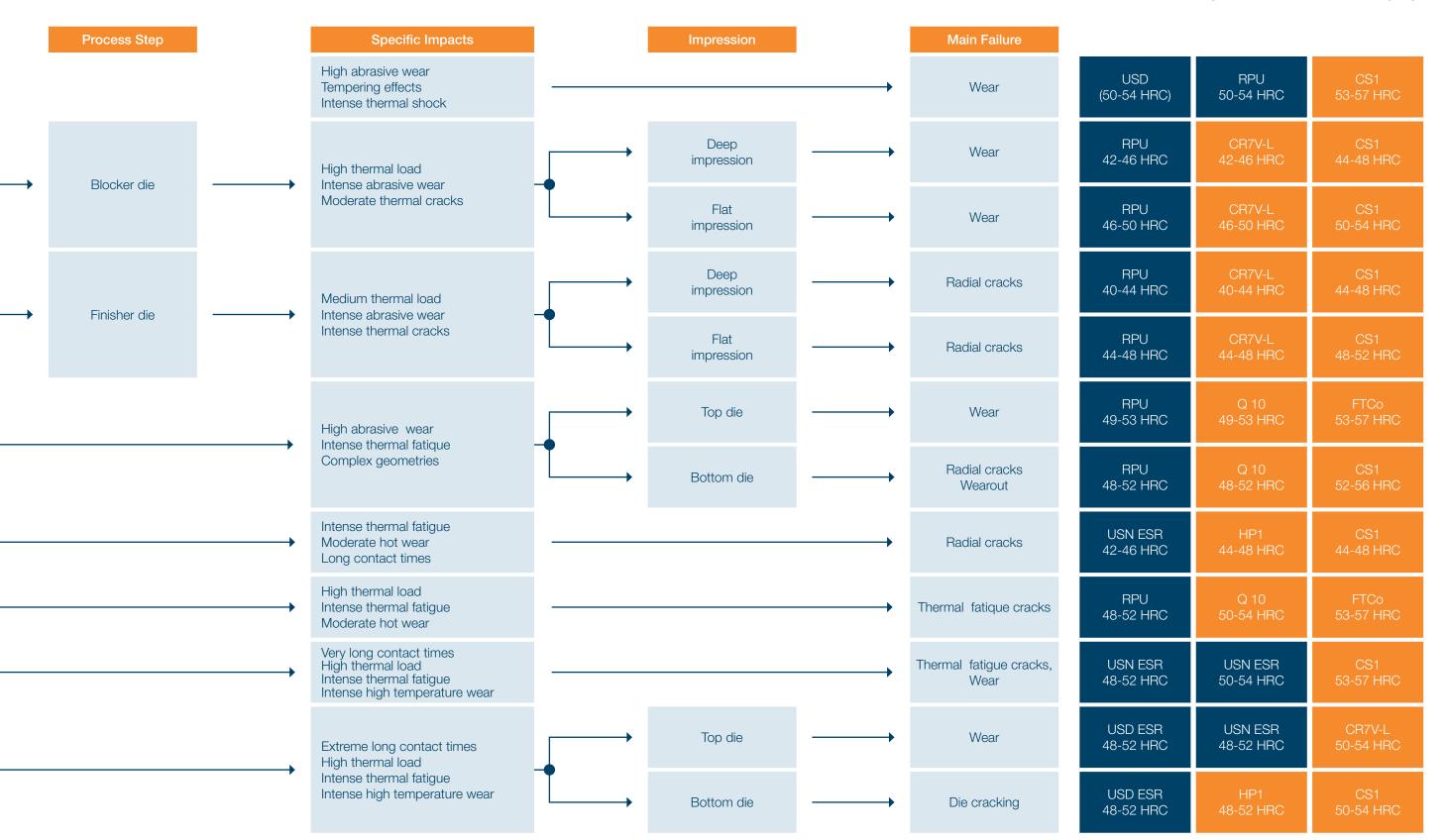
Brand name	AISI	Mass%									
		С	Si	Mn	Cr	Мо	Ni	V	Со	W	
GSF	-	0.28	0.30	0.70	2.80	0.60	1.00	0.40	-	-	-
USN	H 11	0.37	1.00	0.40	5.20	1.20	-	0.40	-	-	-
USD	H 13	0.40	1.00	0.40	5.20	1.30	-	1.00	-	-	-
RPU	-	0.38	0.40	0.40	5.00	3.00	-	0.60	-	-	-
HP1	-	0.35	0.20	0.30	5.20	1.40	-	0.55	-	-	Nb +
Q10	-	0.36	0.25	0.40	5.20	1.90	-	0.55	-	-	-
CR7V-L	-	0.42	0.50	0.40	6.50	1.30	-	0.80	-	-	-
HTR	-	0.32	0.20	0.30	2.20	1.20	-	0.50	-	3.80	-
CS1	-	0.50	0.30	0.40	5.00	1.90	-	0.55	-	-	Nb +
FTCo	-	0.53	0.35	0.40	4.00	2.00	-	1.10	0.90	1.50	Nb +
SA718	UNS 7718	0.05	≤ 0.35	≤ 0.35	19.00	3.00	53.00	-	-	-	Al 0.50 Ti 0.90 Nb 5.00 Fe Rest

Requirements for tool steel solution


	Steel	Stainless	Aluminium	Brass	Titanium Cobalt / Chrome	Nickel Based alloys
Hot wear resistance	••••	•••••	••0000	•••000	••••	•••••
Tempering resistance	••••	••••00	•••000	•••••	•••••	•••••
Toughness	••••	•••000	•••••	•••000	•••••	•••••

The processed material influences the requirements for tool steel as well as the process

Tools		Bar	Single block / or ring	Pre-machined	Pre-machined supplied at working hardness	Manufactured in accordance with drawings, without impression	Processed in accordance with 3D data / drawings
D:	Round dies	X	х	x	х	X	
Dies	Flat dies	X	X	X	X	X	
Rolling tools	Tapered rolls		х	X	X	X	X
	Main rolls		X	X	X	X	X
	Expanding mandrels		x	x	x	x	x
	Mandrel sleeves		x	x	x	x	x
	Stems		x	x	x	x	X
	Forging rolls		X	X	X	X	
	Cross wedge rolls		x	x	x	x	



Tool steel selection for improved economics in closed-die forging with forging presses.

Experiences from the forging industry

Product	Machine Type	Grade in Comparison	Reason for Failure	Kind Special Tool Steel	Improved Lifetime Forged Against Standard Used before
Complex design of metal braket	Forging hammer	1.2714 – 38-40 HRC	deep cracks in the bottom radius	GSF – 40-42 HRC	2 times less cracks less remachining
Ring gear made of engineering steel	Hydraulic press 1600 tons	1.2367 – 45 HRC	failure due to die breakage	Q10 – 48-52 HRC	~ 3 times
Suspension parts	Hydraulic press 2500 tons Blocker and finisher	AISI H 11 (1.2343)	Wear	CR7V-L – 50-54 HRC	+ 50%
Larger connecting rods	Hydraulik press 3000 tons Finish forging die	Medium alloyed die steel, improved for toughness	Die crack	Q 10 – 44-46 HRC	+ 75%
Truck parts	Hydraulic press 6500 tons	1.2714	Crack	GSF – 38-42 HRC	+ 38%
Automotive suspension part	Hydraulic press 2500 tons Blocker and finisher	1.2343	Micro surface cracks and wear	CR7V-L – 50-54 HRC	+ 42%
Connecting rods	Hydraulic press 2500 tons	(1.2367)	Wear	CR7V-L - 50-52 HRC	+ 27%
Crankshafts	Hydraulic press 4000 tons Blocker die	AISI H 13 (1.2344)	Wear	CR7V-L – 40-42 HRC	+ 38%
Crankshafts	Hydraulic press 4000 tons Finisher die	AISI H 13 (1.2344)	Micro cracks	CR7V-L – 40-42 HRC	+ 26%
Crankshafts	Hydraulic press 12000 tons Blocker die	AISI H 13 (1.2344)	Wear	CR7V-L – 38-41 HRC	+ 43%
Connecting rods	Hydraulic press 2500 tons Blocker die	AISI H 13 (1.2344)	Wear	CR7V-L – 48-50 HRC	+ 25%
Sector shafts	Mechanical press 2000 tons Hot forging 1st forging stage Bottom die	AISI H 13 (1.2344)	Wear	CR7V-L - 50-52 HRC	+ 35%
Sector shafts	Mechanical press 2000 tons Hot forging 2nd forging stage Bottom die	AISI H 13 (1.2344)	Cracking	Q10 – 48-50 HRC	+ 52%
Aluminium forging Chassis suspension parts components	Concatenated Forging line	many test series with different tool steel materials	Intensive radial cracks	HP1 – 45 HRC	Best performance of all tested standard and special grades
Orthopedic implant Ti and Co Cr alloys	Precision forging line Near net shape forging	1.2367 50-52 HRC	Radial cracks	CS1 - 53-55 HRC	+ 62%
Turbine blades made of Ti composite	Screw press 4000 tons and 8000 tons	(H 11) 1.2343 46-48 HRC	Cracks in the bottom die	USN ESR 3 d forged	+ 142%
Brass components	650 tons press	1.2367	Wear	FTCo – 52 HRC	~ 5 times
Stem tool for high speed forging	Hatebur P 50	1.2365 50-52 HRC	Wear and intense deformation	FTCo – 54-56 HRC	~ 3 times
Spindels	Warm forging press 1st forging stage Bottom die	Warm forging press 1st forging stage Bottom die	Wear	CR7V-L – 52-54 HRC	+ 57%

Production processes

Melting

Forging

Heat treatment

Mechanical processing

Vacuum hardening

Surface treatment

Products

Hot-work tool steels

Cold-work tool steels

Die forging steels

Plastic mould steels

Industries

Die casting

Extrusion

Die forging

Pipe technology

Plastics technology

Hot-stamping

Special applications