Kind & Co., Edelstahlwerk, GmbH & Co. KG

Warmarbeitsstähle und deren Legierungen Ingolf Schruff

Kind & Co., Edelstahlwerk, GmbH & Co. KG

Schmelzen Umschmelzen

Schmieden

Wärmebehandlung Vakuumhärten

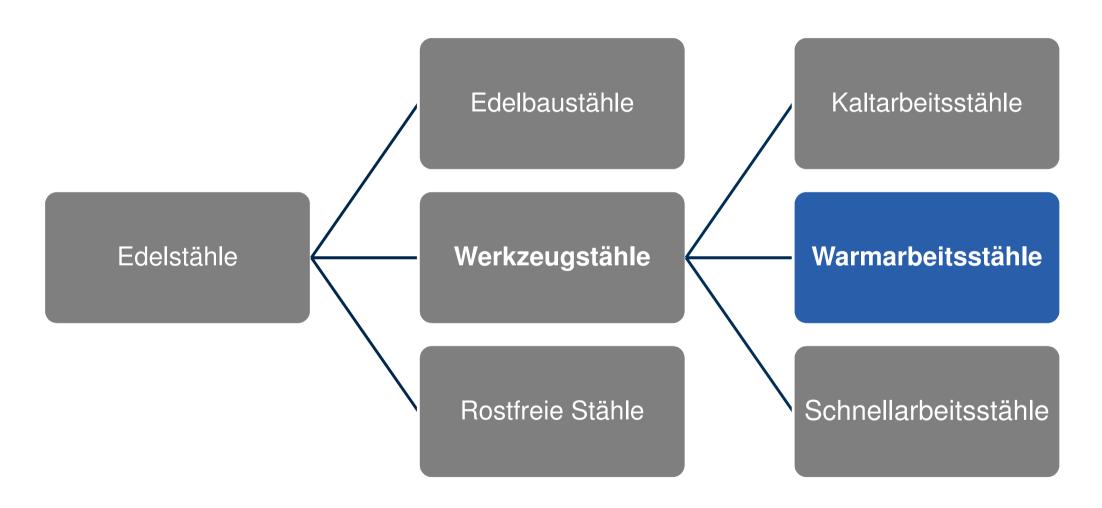
Lager

Mechanische Bearbeitung

SERVICE

Gliederung

- Einordnung, Definitionen, Hauptanwendungen
- Legierungstechnische Grundlagen
- Warmarbeitsstähle für das Gesenkschmieden
- Warmarbeitsstähle für das Druckgießen
- Warmarbeitsstähle für das Strangpressen
- Zusammenfassung



Gliederung

- Einordnung, Definitionen, Hauptanwendungen
- Legierungstechnische Grundlagen
- Warmarbeitsstähle für das Gesenkschmieden
- Warmarbeitsstähle für das Druckgießen
- Warmarbeitsstähle für das Strangpressen
- Zusammenfassung

Einordnung

Grundlegende Norm für Werkzeugstähle: DIN EN ISO 4957

Definition nach DIN EN ISO 4957

Warmarbeitsstähle:

Legierte Werkzeugstähle für Verwendungszwecke, bei denen die Oberflächentemperatur im allgemeinen über 200 °C liegt.

Hauptanwendungsgebiete der Warmarbeitsstähle

Druckgießen

$$T = 450 - 1000 \, ^{\circ}C$$

Gesenkschmieden $T = 450 - 1000 \,^{\circ}C$

$$T = 450 - 1000 \, ^{\circ}C$$

Glasverarbeitung

Presshärten

$$T = 800 - 1000 \, ^{\circ}C$$

Strangpressen

$$T = 500 - 1000 \, ^{\circ}C$$

Gliederung

- Einordnung, Definitionen, Hauptanwendungen
- Legierungstechnische Grundlagen
- Warmarbeitsstähle für das Gesenkschmieden
- Warmarbeitsstähle für das Druckgießen
- Warmarbeitsstähle für das Strangpressen
- Zusammenfassung

Legierungstechnische Grundlagen für Warmarbeitsstähle

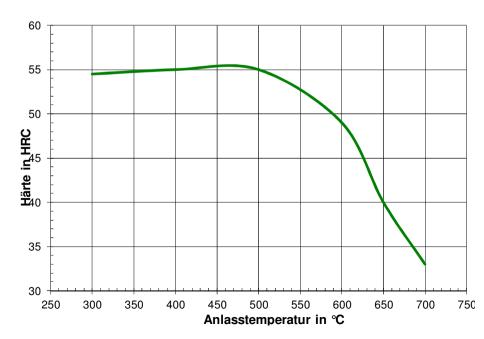
Warmarbeitsstähle – bis auf wenige Ausnahmen – sind martensitisch härtbare Stähle, deren Gebrauchshärte durch Härten und Anlassen eingestellt werden.

Erforderliche Legierungselemente:

C: verantwortlich für die Härtung durch Martensitbildung

Cr, Mo, V: Carbidbildner, bilden zusammen mit C bei ausreichenden

Massengehalten beim Anlassen Sekundärcarbide


Sekundärhärtemaxium

verantwortlich für:

Anlassbeständigkeit

Warmfestigkeit

Thermoschockbeständigkeit

Legierungstechnische Grundlagen für Warmarbeitsstähle

Anlassbeständigkeit

Der auf seine Gebrauchshärte gehärtete und angelassene Stahl behält auch bei erhöhter Arbeitstemperatur die Härte.

Warmfestigkeit

Der Stahl verfügt auch bei erhöhter Prüftemperatur (Arbeitstemperatur) noch über eine ausreichende (Zug)festigkeit.

(Warm)zähigkeit

Der Stahl verfügt (auch bei erhöhter Temperatur = Arbeitstemperatur) über die Fähigkeit, Spannungen in Verformungen umzuwandeln.

Thermoschockbeständigkeit Der Stahl widersteht auftretenden Temperaturschocks ohne Bildung netzwerkartiger Thermoschockrisse.

Gliederung

- Einordnung, Definitionen, Hauptanwendungen
- Legierungstechnische Grundlagen
- Warmarbeitsstähle für das Gesenkschmieden
- Warmarbeitsstähle für das Druckgießen
- Warmarbeitsstähle für das Strangpressen
- Zusammenfassung

Warmarbeitsstähle für das Gesenkschmieden

Beanspruchungen:

- Thermisch
- Mechanisch
- Tribologisch

Anforderungen:

- Warmfestigkeit
- Warmverschleißwiderstand
- Warmzähigkeit
- Anlassbeständigkeit
- Thermoschockbeständigkeit

Warmarbeitsstähle für das Gesenkschmieden

Die Auswahl des geeigneten Warmarbeitsstahles hängt zunächst vom eingesetzten Schmiedeaggregat ab.

Schmiedehammer:

- Gesenkbauweise: Vollgesenk
- Extrem schlagartige Gesenkbeanspruchung,
- Kurze Druckberührzeit,
- Mäßige thermische Beanspruchung,
- Hauptanforderung an Warmarbeitsstahl: Zähigkeit.

Schmiedepresse:

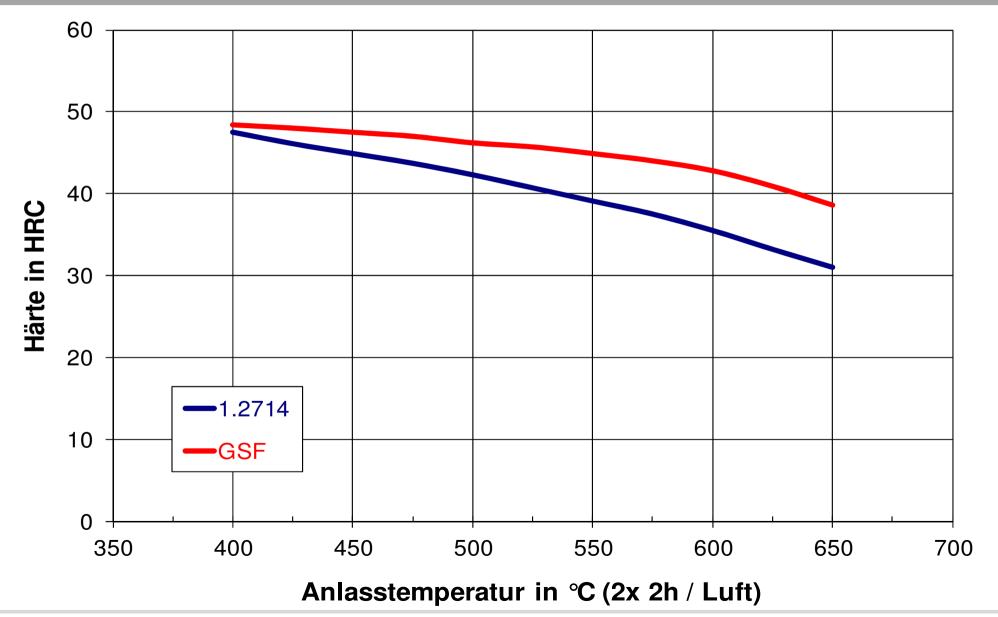
- Gesenkbauweise: armierter Teileinsatz
- Schlagartige Gesenkbeanspruchung,
- · Längere Druckberührzeit,
- Erhöhte thermische Beanspruchung, besonders im Untergesenk
- Hauptanforderung an Warmarbeitsstahl: Verschleißbeständigkeit, Zähigkeit.

Gesenkschmieden - Gesenkschäden

Gewaltbruch

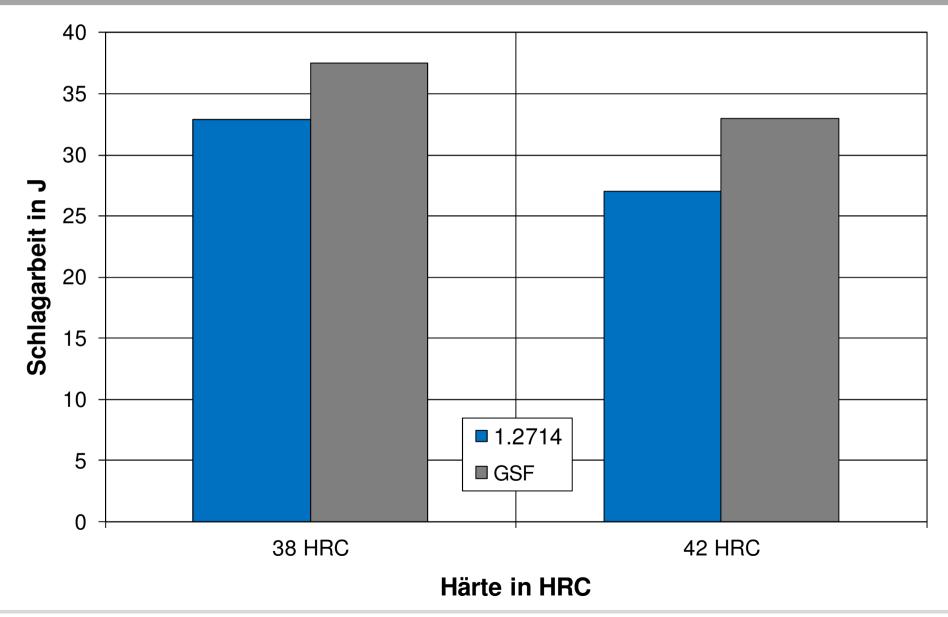
Abrasiver Verschleiß

Wichtige Eigenschaft des einzusetzenden Warmarbeitsstahles: Zähigkeit Verschleißbeständigkeit



Gesenkschmieden – Stahlempfehlungen für Hammergesenke

W.Nr.	1.2714			
Kurzname	55NiCrMoV7			
Markenname	PWM	GSF		
С	0,55	0,28		
Si	0,30	0,30		
Mn	0,80	0,70		
Cr	1,10	2,80		
Мо	0,50	0,60		
Ni	1,70	1,00		
V	0,40	0,40		
	> schlagzäh	> gute Zähigkeit		
	> geringe Warmfestigkeit	> gute Durchvergütbarkeit		
	> geringer Verschleiß-	> bessere Anlass-		
	widerstand	beständigkeit als 1.2714		



Gesenkschmieden – Stahlempfehlung für Hammergesenke, Anlassverhalten

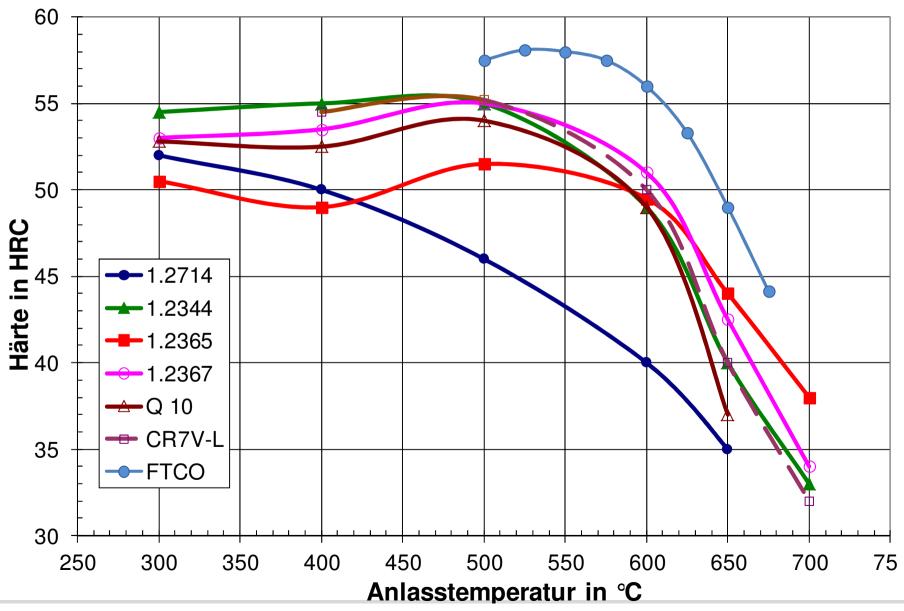
Gesenkschmieden – Stahlempfehlungen für Hammergesenke, Zähigkeit

Gesenkschmieden – Stahlempfehlung für Pressengesenke

Die Auswahl eines für Pressengesenke geeigneten Warmarbeitsstahles hängt von verschiedenen Faktoren ab:

- Umformstufe Vorverformung (Blocker)
 - Fertigschmiedung (Finisher)
- Tiefe der Gravur

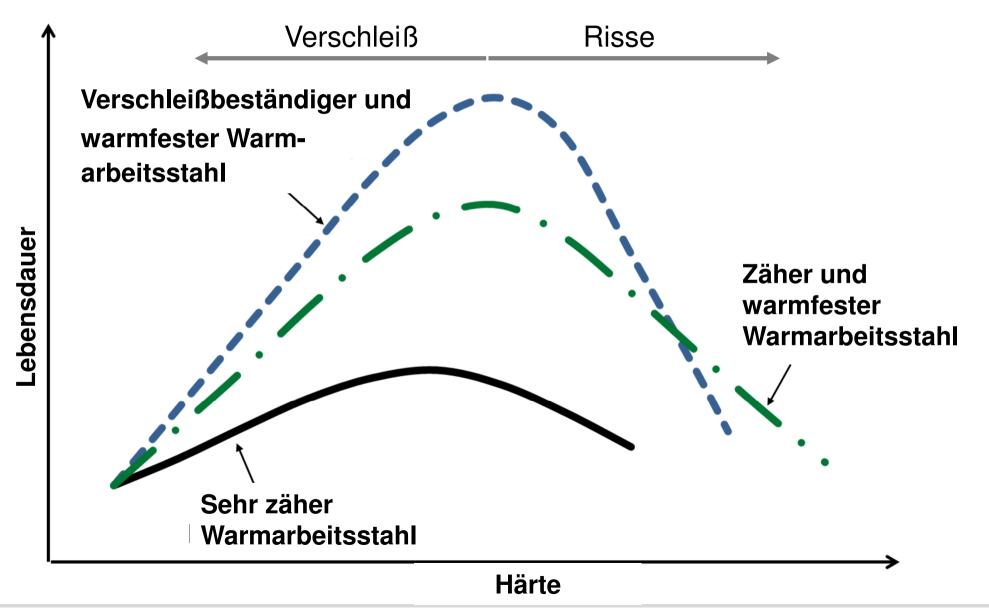
- Teiledesign (z.B. Radien)
- Gewünschte Losgröße



Gesenkschmieden – Empfehlung für Pressengesenke

Stah	lbezeichnung	Legierungsgehalt in Gew %									
WNr.	Kurzname	С	Si	Mn	Cr	Мо	Ni	V	W	Со	Nb
1.2344	X40CrMoV5-1	0,40	1,00	0,40	5,20	1,30		1,00			
1.2365	32CrMoV12-28	0,32	0,40	0,40	3,00	2,80		0,60			
1.2367	X38CrMoV5-3	0,38	0,40	0,40	5,00	2,80		0,60			
	Q 10	0,36	0,25	0,40	5,20	1,90		0,55			
	CR7V-L	0,42	0,50	0,50	6,50	1,30		0,80			
	FTCO	0,53	< 0,35	0,40	4,00	2,00		1,10	1,50	0,90	+

Gesenkschmieden – Anlassverhalten geeigneter Warmarbeitsstähle



Gesenkschmieden – Qualitativer Vergleich geeigneter Warmarbeitsstähle

eichnung	Haupteigenschaft						
WNr.	Zähigkeit	Warmfestigkeit	Verschleißbeständigkeit				
1.2344	***	***	***				
1.2365	***	***	***				
1.2367	***	***	***				
	***	***	***				
	**	***	****				
	*	****	****				
	WNr. 1.2344 1.2365 1.2367	 WNr. Zähigkeit 1.2344 1.2365 1.2367 <	WNr. Zähigkeit Warmfestigkeit 1.2344 ***** ***** 1.2365 ***** ***** ***** ***** ***** *****				

Gesenkschmieden - Härteempfehlungen

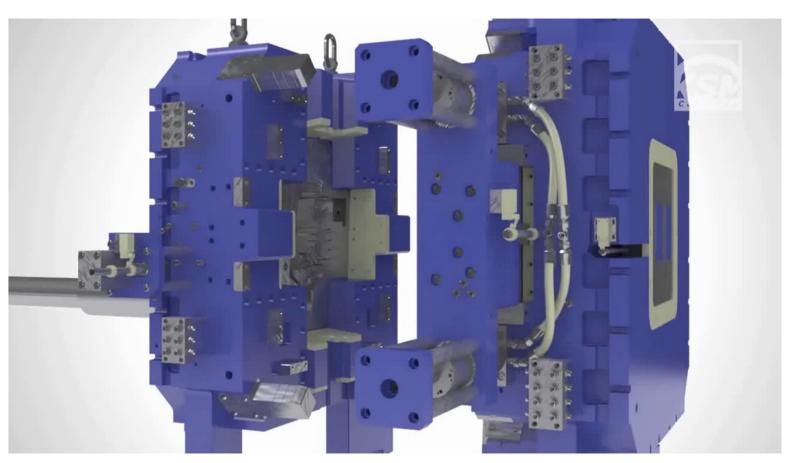
Gliederung

- Einordnung, Definitionen, Hauptanwendungen
- Legierungstechnische Grundlagen
- Warmarbeitsstähle für das Gesenkschmieden
- Warmarbeitsstähle für das Druckgießen
- Warmarbeitsstähle für das Strangpressen
- Zusammenfassung

Warmarbeitsstähle für das Druckgießen

Die Auswahl des geeigneten Warmarbeitsstahles für dieses Urformverfahren wird erheblich bestimmt durch:

- Größe des Gussteils,
- Design des Gussteils,
- Komplexität des Gussteils,
- Wandstärke des Gussteils,
- Oberflächenanforderungen an das Gussteil,
- Thermische Beanspruchung der Druckgießform,
- Kühlkonzept der Druckgießform,
- Geplante Losgröße.

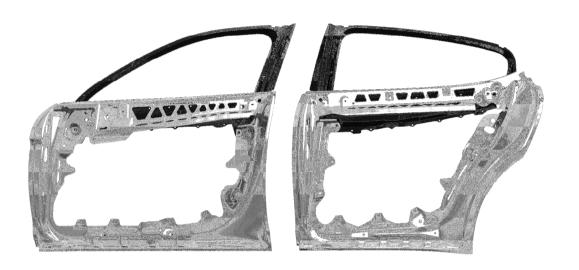

Warmarbeitsstähle für Druckgießformen

Beanspruchungen:

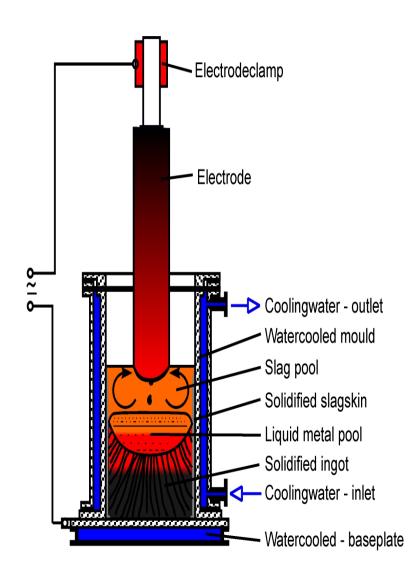
- Thermisch
- Mechanisch
- Chemisch
- Zyklisch

Anforderungen:

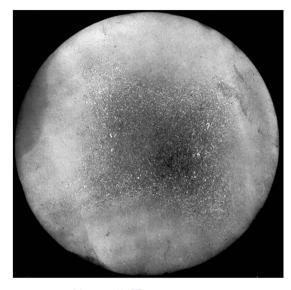
- Warmfestigkeit
- Warmzähigkeit
- Anlassbeständigkeit
- Thermoschockbeständigkeit


Bildquelle: KSM Castings

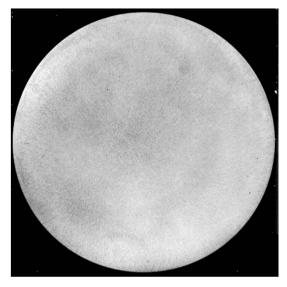
Druckgießen – Gegossene Produkte



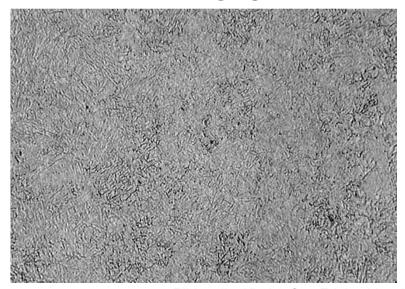
Bildquellen: Thyssen Edelstahlwerke AG, Georg Fischer Automotive, Magna BDW Technologies


Druckgießen – Elektro-Schlacke-Umschmelzen (ESU)





Druckgießen – Elektro-Schlacke-Umschmelzen (ESU)

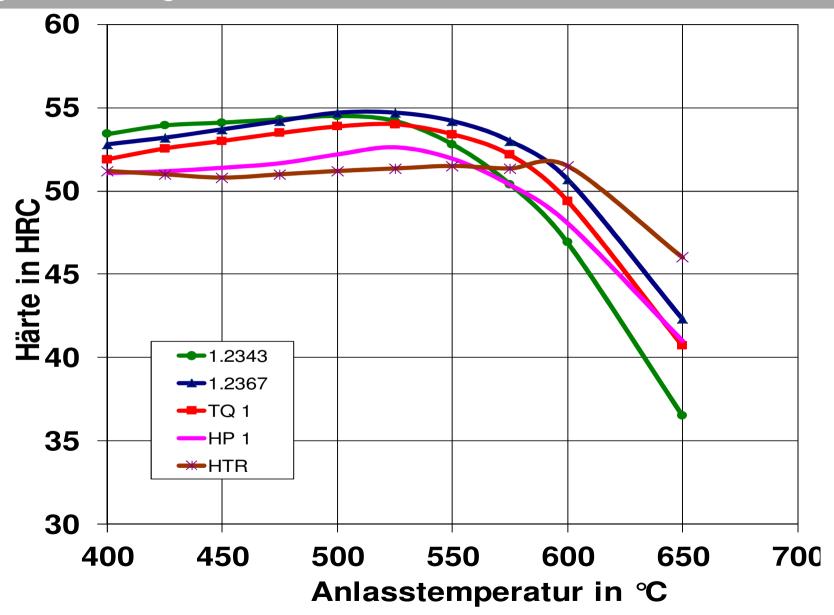


"offene" Erzeugung

ESU-Erzeugung

Bildquelle: Kind & Co., Edelstahlwerk, GmbH & Co. KG

Druckgießen – Geeignete Warmarbeitsstähle

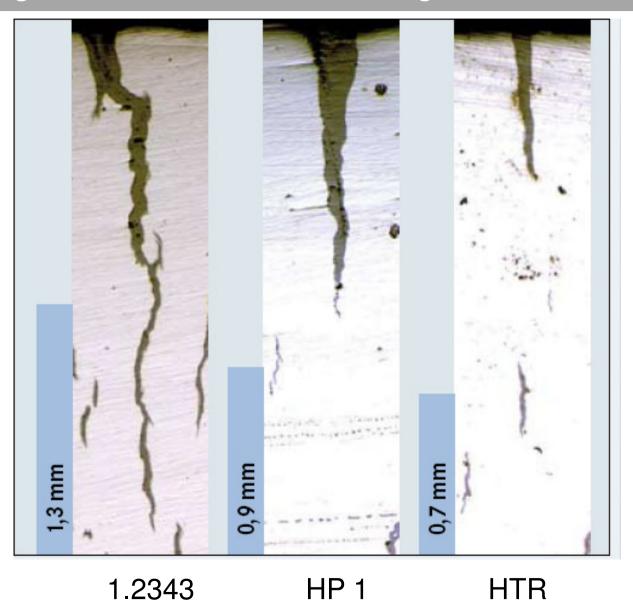

WNr.	Kurzname	Marken-		Legierungsgehalt in Massen-%								
		name	С	Si	Mn	Р	S	Cr	Мо	V	Nb	W
1.2343	X37CrMoV5-1	USN	0,38	1,00	0,40	< 0,02	< 0,005	5,20	1,20	0,40		
1.2344	X40CrMoV5-1	USD	0,40	1,00	0,40	< 0,02	< 0,005	5,20	1,30	1,00		
1.2367	X37CrMoV5-3	RPU	0,38	0,40	0,40	< 0,02	< 0,005	5,00	2,80	0,55		
		TQ 1 *)	0,36	0,25	0,40	< 0,012	< 0,003	5,20	1,90	0,55		
		HP 1 *)	0,35	0,20	0,30	< 0,012	< 0,003	5,20	1,40	0,55	+	
		HTR	0,32	0,20	0,30	< 0,020	< 0,003	2,20	1,20	0,50		3,80

*) Die Stähle TQ 1 und HP 1 zeichnen sich durch sehr hohe Reinheit und niedrigste Gehalte an schädlichen Begleitelementen aus!

Für Druckgießformen sollten nur Warmarbeitsstähle aus Elektro-Schlackeumgeschmolzener oder gleichwertiger Erzeugung verwendet werden!

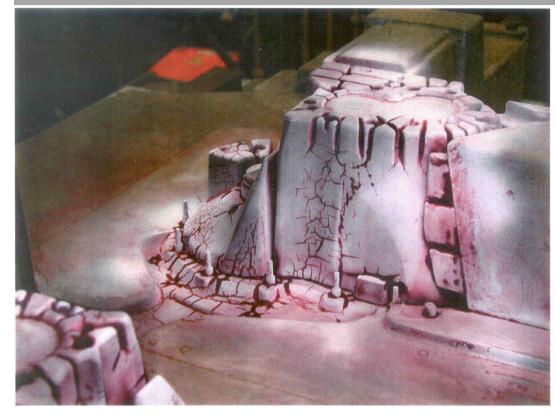
Druckgießen – Geeignete Warmarbeitsstähle, Anlassverhalten

Druckgießen – Geeignete Warmarbeitsstähle, Warmfestigkeit


Druckgießen – Thermoschockrisse auf einer Formenoberfläche

Bildquelle: Kind & Co., Edelstahlwerk, GmbH & Co. KG

Druckgießen – Thermoschockbeständigkeit unterschiedlicher Warmarbeitsstähle



Rissausbildung nach 4.000 Zyklen 600 °C / Wasser

Bildquelle: Kind & Co., Edelstahlwerk, GmbH & Co. KG

Druckgießen – Thermoschockbeständigkeit unterschiedlicher Warmarbeitsstähle

TQ₁

Rissprüfung nach 72.000 Schuss

1.2343

Bildquelle: Kind & Co., Edelstahlwerk, GmbH & Co. KG

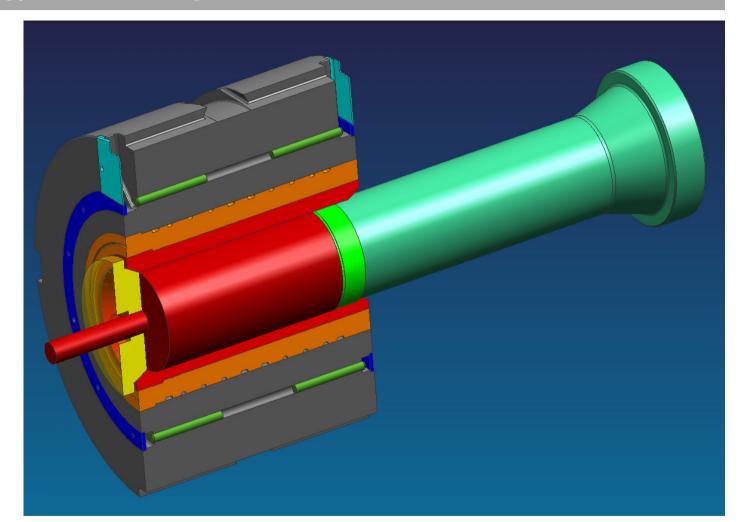
Gliederung

- Einordnung, Definitionen, Hauptanwendungen
- Legierungstechnische Grundlagen
- Warmarbeitsstähle für das Gesenkschmieden
- Warmarbeitsstähle für das Druckgießen
- Warmarbeitsstähle für das Strangpressen
- Zusammenfassung

Warmarbeitsstähle für das Strangpressen

Die Auswahl des geeigneten Warmarbeitsstahles für dieses Umformverfahren wird erheblich bestimmt durch:

- Art des zu verpressenden Metalls (Leichtmetall, Schwermetall),
- Art und Konstruktion der Werkzeugkomponente (Rezipient, Stempel, Matrize),
- Größe der Werkzeugkomponente,
- Thermische Beanspruchung der Werkzeuge,
- Mechanische Beanspruchung der Werkzeuge,
- Geplante Losgrößen.

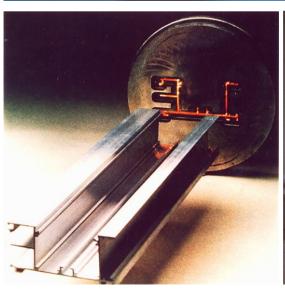

Warmarbeitsstähle für Strangpresswerkzeuge

Beanspruchungen:

- Thermisch
- Mechanisch
- Tribologisch

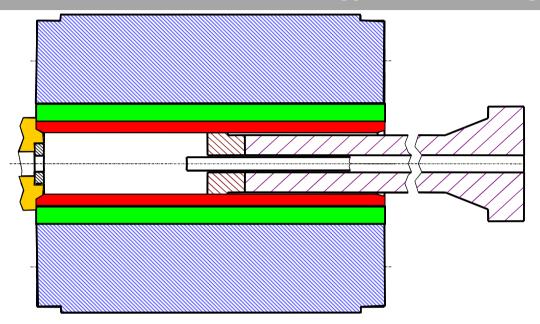
Anforderungen:

- Warmfestigkeit
- Warmverschleißwiderstand
- Warmzähigkeit
- Anlassbeständigkeit





Warmarbeitsstähle für Strangpresswerkzeuge



Warmarbeitsstähle für Strangpresswerkzeuge

Mechanische Beanspruchungen:

- > Pressdruck
- > Reibung

Thermische Beanspruchungen:

> Prozesstemperatur

Notwendige Eigenschaften:

- > hohe Warmfestigkeit und -zähigkeit
- > hohe Warmverschleißbeständigkeit
- > hohe Anlassbeständigkeit

				-			-		
Le	11	\sim	h	ŧ۱	m	Δ'	ta	•	
-c	7 I Y	•		L		ᆫ	La		

1.2343, 1.2344, 1.2367, HTR

Rezipientenmantel	1.2343, 1.2367
Zwischenbüchse	1.2343, 1.2344, 1.2367, Q10
Innenbüchse	1.2343, 1.2344, 1.2367, Q10
Pressstempel	1.2343, 1.2367, TQ1, Q10
Dorn	1.2343, 1.2344, 1.2367
Pressscheibe	1.,2343, 1.2367, HTR
Matrize	1.2343, 1.2344, 1.2367, TQ1

Matrizenhalter

Schwermetall

1.2343, 1.2367

1.2343, 1.2367, Q10, HTR

1.2367, 1.2779, 2.4668

1.2367, TQ1, Q10

1.2344, 1.2367, HTR

1.2367, HTR, 2.4668

1.2367, HTR,1.2731, 2.4668, 2.4973

1.2343, 1.2344, 1.2367, HTR

Gliederung

- Einordnung, Definitionen, Hauptanwendungen
- Legierungstechnische Grundlagen
- Warmarbeitsstähle für das Gesenkschmieden
- Warmarbeitsstähle für das Druckgießen
- Warmarbeitsstähle für das Strangpressen
- Zusammenfassung

Zusammenfassung

- Warmarbeitsstähle sind Werkzeugstähle für Verwendungszwecke, bei denen die Oberflächentemperatur im allgemeinen über 200 °C liegt.
- Wichtige Werkstoffeigenschaften der Warmarbeitsstähle sind: Anlassbeständigkeit, Warmfestigkeit, Warmzähigkeit, Thermoschockbeständigkeit.
- Wesentliche Legierungselemente in Warmarbeitsstählen: C, Cr, Mo, V.
 Sie sind über die Bildung von Sekundärcarbiden u.a. für die Entstehung von Warmfestigkeit und –zähigkeit sowie Thermoschockbeständigkeit verantwortlich.
- Werkzeuge aus Warmarbeitsstählen unterliegen im Einsatz komplexen Beanspruchungen. Besonders hoch beanspruchte Werkzeuge wie z.B. Druckgießformen benötigen Warmarbeitsstähle aus ESU- oder gleichwertiger Erzeugung.
- Härtefestlegungen für Werkzeuge bedürfen einer sorgfältigen Analyse.
- Sonder-Warmarbeitsstähle bieten verbesserte Eigenschaftspotenziale.

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt

Ingolf Schruff Kind & Co., Edelstahlwerk, GmbH & Co. KG Anwendungstechnik Werkzeugstahl

Bielsteiner Str. 124-130

51674 Wiehl

Telefon: 02262/84-498 Telefax: 02262/84-152

Web: www.kind-co.de

Email: Ingolf.Schruff@kind-co.de

